On the Cohomology Comparison Theorem
نویسنده
چکیده
A relative derived category for the category of modules over a presheaf of algebras is constructed to identify the relative Yoneda and Hochschild cohomologies with its homomorphism groups. The properties of a functor between this category and the relative derived category of modules over the algebra associated to the presheaf are studied. We obtain a generalization of the Special Cohomology Comparison Theorem of M. Gerstenhaber and S. D. Schack.
منابع مشابه
Digital cohomology groups of certain minimal surfaces
In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...
متن کاملDigital Borsuk-Ulam theorem
The aim of this paper is to compute a simplicial cohomology group of some specific digital images. Then we define ringand algebra structures of a digital cohomology with the cup product. Finally, we prove a special case of the Borsuk-Ulam theorem fordigital images.
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملBrace Algebras and the Cohomology Comparison Theorem
The Gerstenhaber and Schack cohomology comparison theorem asserts that there is a cochain equivalence between the Hochschild complex of a certain algebra and the usual singular cochain complex of a space. We show that this comparison theorem preserves the brace algebra structures. This result gives a structural reason for the recent results establishing fine topological structures on the Hochsc...
متن کاملA Hochschild Cohomology Comparison Theorem for Prestacks
We generalize and clarify Gerstenhaber and Schack’s “Special Cohomology Comparison Theorem”. More specifically we obtain a fully faithful functor between the derived categories of bimodules over a prestack over a small category U and the derived category of bimodules over its corresponding fibered category. In contrast to Gerstenhaber and Schack we do not have to assume that U is a poset.
متن کامل